Аналогично обстоит дело с рождением небесных тел. Относительно рождения планет существует ряд теорий. Для астероидов и комет также есть предположения, и все они, разумеется, имеют центральным пунктом притяжение частиц протопланетного диска друг к другу. После появления звезды в ее аккреционном диске есть лишь мельчайшие частички пыли, и им нужно пройти долгий путь до крупных камней, планетезималей, планет. Этот процесс остается загадкой, основную часть которой и помог разгадать высокогорный интерферометр.
Компьютерное моделирование показывает, что частицы пыли в окружении звезды могут слипаться при столкновениях. Однако увеличившаяся таким образом частица, сталкиваясь с себе подобной на огромной скорости, разрушается. Процесс останавливается задолго до достижения размеров астероидов. Если же частица почему-то избежала опасных столкновений или пережила их, ее подстерегает другая опасность. Увеличившись в размерах, она начинает испытывать большее сопротивление при движении через протопланетный диск. Ее орбита понижается и она в конце концов падает на звезду. Выходит, в диске должны быть места, где частицы пыли имеют шанс разрастись до больших размеров, после чего им становятся неопасны типичные проблемы меньших собратьев. Время жизни такой ловушки для пыли должно составлять сотни тысяч лет. Столько времени нужно для «взросления» крупной пылевой частицы. После того, как ловушка перестает существовать, бывшие в ней частицы продолжают двигаться по близким орбитам и распадаются очень медленно, что благоприятствует дальнейшему росту.
Снимки ALMA (зеленый - миллиметровый, 450 нм) и Очень большого телескопа (оранжевый - инфракрасный, 18 нм) (eso.org)
Модели такого процесса были предложены давно, а их наблюдательное подтверждение получено лишь несколько месяцев назад. Удача сопутствовала сотруднице Лейденской обсерватории Нинке ван дер Марел. Конечно, использовалось при этом не оборудование древней обсерватории. Интерферометр ALMA, недавно введенный в эксплуатацию, позволил наблюдать протопланетный диск вокруг звезды Oph-IRS 48. Расстояние до звезды составляет около 400 световых лет. Наблюдения были проведены еще до того, как интерферометр был официально запущен с помощью менее чем половины составляющих его радиотелескопов. Работа проводилась в диапазоне 0.4–0.5 миллиметров (в этом диапазоне интерферометр пока имеет наилучшее разрешение). Предшествующие наблюдения этой звезды с помощью Очень большого телескопа показали, что пыль в диске собирается в дискообразные структуры, а первые наблюдения с помощью радиотелескопа показали, что в газе диске можно заметить очень похожие на них дыры, которые вначале были отнесены на долю уже родившихся в диске планет, крупных астероидов или даже звезды-компаньона.
«Поначалу структуры, найденные в снимках пылевого облака стали неожиданностью, – говорит Марел. – Вместо кольца, которое мы ожидали увидеть, перед нами предстала точная форма ореха кешью. Нам пришлось потратить немало времени, убеждая себя, что эта структура была реальной, и высокое пространственное разрешение и четкость полученного с помощью ALMA изображения не оставили и тени сомнения. Затем уже быстрее мы сообразили, что означает это открытие». Обнаруженная структура является собой ту самую область, где крупные частиц пыли оказываются запертыми, но зато защищенными от разрушения и могут продолжать свой рост. Это – идеальная с точки зрения теоретиков ловушка для пыли. «Судя по всему, нашу взору предстает завод по производству комет. Условия внутри ловушки как раз идеальны, чтобы пыль могла разрастись из миллиметровых крохотных частиц до полноценных ядер будущих комет. Образование же полноценной планеты на таком расстоянии от звезды представляется маловероятным. В скором времени, однако, интерферометр ALMA будет способен наблюдать ловушки для пыли ближе к звезде, и там должны работать точно те же механизмы. Осталось лишь дождаться открытия колыбелей планет в пыли».
Пылевые ловушки образуются, когда частички пыли попадают в области с повышенным давлением. Моделирование показало, что подобные области повышенного давления могут рождаться при движении газа на краю практически лишенной его области – как раз такой, которая была обнаружена на ранних стадиях наблюдения. «Комбинирование работы по моделированию и наблюдению с высокоточным интерферометром делает работу уникальной, – говорит Корнелис Дюлемо, сотрудник Института теоретической астрофизики в Гейдельберге, ответственный за теоретическую часть в работе. – Как раз во время получения наблюдательных данных мы работали над моделями, предсказывающими рождение таких структур. Удивительное совпадение!»
Вступайте в нашу группу Вконтакте
Источник : http://www.cosmos-journal.ru
Комментарии
RSS лента комментариев этой записи